
DYNAMICS OF ACCUMULATION OF NEGATIVE-BUOYANCY
BLOWOUTS INTO THE ATMOSPHERE IN WINDLESS
WEATHER

V. Sh. Shagapov and G. R. Galiaskarova UDC 539.532

The problem and the corresponding mathematical formulation which describe the accumulation of negative-
buoyancy blowouts on a horizontal surface with account for the resistance of flora and the ground are pre-
sented. Self-similar and approximate analytical solutions are constructed in the presence of flora and in the
absence of it when the force of resistance on the source side of the ground is specified by two different ex-
pressions.

Introduction. The problem of description of the processes of propagation and accumulation of heavy gas
blowouts into the atmosphere is especially pressing for cities with a developed chemical industry. The formation of the
level of contamination of the air basin of these cities is affected by both the quantitative and qualitative composition,
the intensity of blowouts, and meteorological conditions. In what follows, a gas mixture and a mixture of a gas with
solid or liquid particles of negative buoyancy is termed smog (the density of the smog is higher than the density of
atmospheric air). As a result, smog spreads along the underlying ground. The leading role in the propagation of smog
is played by buoyancy forces. In the present work, the propagation of smog is studied on the basis of a theoretical
model constructed similarly to the theory of shallow water [1]. In the mathematical description of this process, we take
the following assumptions: the smog propagates in windless weather; the ground relief is a smooth horizontal surface.

Basic Equations. Let there be a point source of smog. By this we will mean an object with transverse and
longitudinal dimensions of the same order. To simplify a mathematical formulation of the problems we will neglect the
linear dimensions of blowout sources. This assumption means that in what follows we will be interested in distances
which are much larger than the characteristic dimensions of smog sources. Under the assumptions made, the equations
of conservation of mass and momenta in the quasi-one-dimensional approximation have the form [2]

∂h

∂t
 + 

1
r

 
∂
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 (rhu) = 0 , (1)
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 = − g′ 

∂h

∂r
 − 

τG + τA + τF
h
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d

dt
 = 

∂
∂t

 + u 
∂
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 ;   g′ = g 
ρ − ρA

ρ
 .

(2)

We note that (1) is written with the mass exchange between the smog layer and the atmospheric air above the smog
layer (z > h) and the volume fraction of surface objects (trees, houses) being neglected. In Eq. (2), the effect of fric-
tion is allowed for by introduction of the forces of resistance which depend on velocity both linearly and according to
the square law and which are related to h in a certain manner which will be described below.

Two situations are possible in spreading of smog: the smog height is lower than the level of surface objects
(force of resistance τF prevails); the smog height is much higher than surface objects (force τG prevails).

Journal of Engineering Physics and Thermophysics, Vol. 75, No. 2, 2002

Sterlitamak State Pedagogical Institute, Sterlitamak, Russia; email: gguselia@mail.ru. Translated from Inzhen-
erno-Fizicheskii Zhurnal, Vol. 75, No. 2, pp. 22–27, March–April, 2002. Original article submitted February 16, 2001;
revision submitted July 12, 2001.

1062-0125/02/7502-0292$27.00  2002 Plenum Publishing Corporation292



Dynamics of Accumulation of Smog in the Presence of Flora. We consider a situation which corresponds
to the propagation of smog, for example, in the forest where the force τF prevails. In this case, we assume that the
thickness of the smog is lower than the level of trees. We can consider two limiting cases, namely: thick flora where
the linear law of resistance can be taken (by analogy with the theory of underground hydraulics) and thinly growing
flora. In the second case, we use the square law of resistance. Then, in accordance with what was stated above, we
can write

f = 
u

tu
 ,   f = 

u
2

ru
   




f = 

τF

h




 . (3)

In particular, if we take Newton’s formula for resistance, then in the case of the square law of resistance we have

ru = χ ⁄ nd .

An analysis shows that inertia effects (determined by the terms on the right-hand side of Eq. (2)) are usually substan-
tial at the initial stage which satisfies the conditions (1) t∗  D tu, r∗  D u∗ t∗ /2 for the linear law of resistance and (2)
t∗  D ru

 ⁄ u∗ , r∗  D ru/2 for the square law of resistance, where u∗  is the maximum smog velocity, which is similar to
sound "choking" in gas dynamics and is bounded by the value u∗  = √g′h∗ .

It is apparent that in spreading of the smog, the situation where the effect of the gravity force counterbalances
the force of resistance (inertia forces are negligible) is of greatest interest. Then, on the basis of the equations of con-
servation of mass and momenta, by neglecting the terms on the left-hand side of Eq. (2) we obtain
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′
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′  
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   (g(1)
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


 ,   u = √ − g(2)

′  
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∂r
   (g(2)
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for the cases of linear and square laws of resistance. We note that (4) is the Boussinesq equation widely used in un-
derground hydraulics [3].

Let there be no smog at the initial instant of time, and at a certain instant t = 0 a point source with a con-
stant power (Q(t) = const) begins to function. Then the initial and boundary conditions have the form

h = 0   (t = 0 ,  r > 0) ,   (2π rhu)rc
 = Q   (t > 0 ,  rc → 0) . (6)

In the case of the linear law of resistance, this problem has a self-similar solution. We introduce the dimensionless
height of the smog and the self-similar coordinate

H = h ⁄ h(1) ,   ξ = r ⁄ √ η(1)t  ,   h(1) = √ Q ⁄ g(1)
′  ,   η(1) = √ Qg(1)

′    . (7)

Then Eq. (4) can be transformed as

− 
ξ
2

 
dH
dξ

 = 
1
ξ

 
d
dξ

 

Hξ 

dH
dξ




 . (8)

In this case, initial and boundary conditions (6) have the form

H (∞) = 0 ,   2πξc 



H 

dH
dξ



 ξc

 = − 1   (ξc → 0) . (9)
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Moreover, the approximate analytical solution of Eq. (4) can be obtained by the method of successive substitution of
steady states (SSSS) [3]. As is known, for many problems associated with solution of the nonlinear equation of heat
conduction this method can be used to determine approximate analytical solutions with an accuracy necessary for many
practical problems. Its essence is as follows. It is assumed that the distribution of parameters which describe the dy-
namics of the process along the coordinate at any instant of time (in our case, the smog height) is similar to a steady-
state process. In other words, using steady-state solutions one constucts splines (analytical formulas) to obtain
approximate solutions of the initial problem. The equation for this distribution (for determination of splines) is ob-
tained on the basis of (4) and (5) by equating their left-hand sides to zero (∂h/∂t = 0). Then, the solution, with ac-
count for the condition h = 0 at r = l(t), can be written in terms of an unknown function l(t). In this case, the
equation for the law of motion of the front boundary of the smog l(t) can be obtained on the basis of the equation of
balance of mass in integral form, and the solution for this problem has the form

h = √Q

πg(1)
′

 ln 




l (t)

r





 ,   l (t) = 0.97 (Qg(1)
′ t

2)1 ⁄ 4   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) . (10)

We represent the solution (10) in the reduced variables (7) as

H = 




1

π
 ln 





ξ0

ξ








1 ⁄ 2

 ,   ξ0 = 0.97   (0 ≤ ξ ≤ ξ0) ,   H = 0   (ξ > ξ0) . (11)

Figure 1 presents the distributions of the smog layer for the linear law of resistance (thick flora). The solid
line corresponds to the numerical solution of Eq. (8), while the dashed line corresponds to the solution (11) with ac-
count for (9). In this case, for laws of motion of the leading front of the smog which correspond to the self-similar
and approximate solutions we have

l (t) = 1.11 (η(1)t)
1 ⁄ 2   and   l (t) = 0.97 (η(1)t)

1 ⁄ 2 .

In the case of thinly growing flora, the solution obtained by the SSSS method with conditions (6) has the
form

h = 

3

√3Q
2

4π2
g(2)

′
 


1

r
 − 

1

l (t)




 ,   l (t) = 1.07 (g(2)
′ Qt

3)1 ⁄ 5   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) . (12)

It follows for the solutions (10) and (12) and for the numerical solution of Eq. (8) that the smog height tends
to infinity when r → 0. This singularity is associated with the fact that the linear dimensions of the smog source are

Fig. 1. Distribution of the dimensionless height of the smog in self-similar
variables for the case of thick flora at a constant power of the smog source.
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disregarded in the formulation of the problem. Moreover, we note that there is a fundamental difference in the char-
acter of distribution of the smog between these two situations described by the solutions (10) and (12). Whereas in the
case of the linear law of resistance for any fixed coordinate r the smog thickness increases without bound (h → ∞
when t → ∞), in the case of the square law when t → ∞ there is a limiting height for each value of r, which is de-
termined from the expression

h
(m)

 = 

3

√3Q
2

4π2
g(2)

′ r
 .

Consequently, ir respective of the time of operation of the source the smog height will not exceed the value of h(m).
For the square law of resistance the problem has a self-similar solution if the dependence of the source power

on time has the form

Q = qt
1 ⁄ 3 . (13)

We introduce the dimensionless height and the self-similar variable

H = h ⁄ h(2) ,   ξ = 
r

(η(2)t)
2 ⁄ 3

 (h(2) = (q3 ⁄ g(2)
′
2

)1 ⁄ 5 ,   η(2) = (g(2)
′ q)3 ⁄ 10) . (14)

Then Eq. (15) in the self-similar variables (14) is represented as

− 
2
3

 ξ 
dH
dξ

 + 
1
ξ

 
d

dξ
 




ξH √− 

dH
dξ

 




 = 0 . (15)

In this case, initial and boundary conditions (6) and (13) in the self-similar variables (14) can be written as follows:

H (∞) = 0 ,   2πξcH √ − 


dH
dξ



 ξc

 = 1   (ξc → 0) . (16)

Numerical solution of Eq. (15) with account for (16) yielded ξ0 = 1.025. Then the expression for the law of motion
of the leading front of the smog has the form l(t) = 1.025(η(2)t)

1 ⁄ 2. The dependence of the dimensionless height of
the smog H on the self-similar coordinate ξ is similar to that presented in Fig. 1.

An approximate analytical solution of Eq. (5) with conditions (6) and (13) has the form

h = 







3q
2
t
2 ⁄ 3

4π2
g(2)

′
 


1

r
 − 

1

l (t)











1 ⁄ 3

 ,   l (t) = 0.81 (qg(2)
′ t

10 ⁄ 3)1 ⁄ 5   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) , (17)

and in the dimensionless self-similar variables (14) it can be written as

H = 


3

4π2 


1

ξ
 − 

1

ξ0









1 ⁄ 3
 l (t) = 0.81 (η(2)t)

2 ⁄ 3 ,   ξ0 = 0.81   (0 < ξ ≤ ξ0) ,   H = 0   (ξ > ξ0) . (18)

Dynamics of Accumulation of Smog in the Absence of Flora. We consider the situation which corresponds
to the propagation of smog over a horizontal surface in the absence of trees (τF = 0), e.g., in a field. Moreover, we
neglect the force of resistance on the source side of the atmosphere (τG >> τA). The force of resistance on the source
side of the ground is specified as follows:
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τG = λu
2
 . (19)

We consider two approaches to specification of the coefficient λ. In the first case, we take λ = const. On the basis of
the data of [4–7], we have λ = (1.4–2.5)⋅10−3 for a smooth field, λ = (1.5–1.7)⋅10−3 for a smooth surface, and λ =
1.42⋅10−3 for a smooth snow-covered icy field.

Then, on the basis of Eqs. (1) and (2) with account for (19) and with the inertia effects being disregarded,
we obtain

∂h
∂t

 = − 
1
r
 
∂
∂r

 




rh √− g(λ)

′ h 
∂h

∂r
 


  ,   u = √− g(λ)

′ h 
∂h

∂r
   




g(λ)

′  = 
g′

λ




 . (20)

The equation which coincides in form with (20) has been obtained in [8] for a description of large shallow
water areas.

An analytical solution corresponding to conditions (6) where the power of a smog source is constant can be
written as

h = 







Q
2

π2
g(λ)

′
 


1

r
 − 

1

l












1 ⁄ 4

 ,   l (t) = 0.8 (Q2
g(λ)

′ t)4 ⁄ 7   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) . (21)

Let the earth’s surface be clean at the initial instant of time and a smog source with a power dependent on
time according to (13) begin to function after a certain period. In this case, the problem also has a self-similar solu-
tion. We introduce the dimensionless height and the self-similar variable in the following manner:

H = h ⁄ h(3) ,   ξ = 
r

(η(λ)t)
2 ⁄ 3

   






h(3) = 








q
3

g(λ)
′
2








1 ⁄ 7

 ,   η(λ) = (g(λ)
′
3

q
6)1 ⁄ 14






 . (22)

Then Eq. (20) in the variables (22) takes on the form

− 
2
3

 ξ 
dH
dξ

 + 
1
ξ

 
d

dξ
 




ξH √− 

dH
dξ

 




 = 0 . (23)

Initial and boundary conditions (6) and (13) in the self-similar variables (22) can be written as

H (∞) = 0 ,   2πξcH √− H 


dH
dξ



 ξc

 = 1   (ξc → 0) . (24)

Numerical solution of Eq. (23) with account for (24) yielded ξ0 = 0.75. Then the expression for the law of motion of
the leading front of the smog has the form l(t) = 0.75 (η(λ)t)

2 ⁄ 3. The dependence of H(ξ) on the self-similar coordi-
nate ξ is similar to that presented in Fig. 1 (solid curve).

Using the SSSS method, we obtain the following analytical solution for this problem:

h = 







q
2
t
2 ⁄ 3

π2
g(λ)

′
 


1

r
 − 

1

l












1 ⁄ 4

 ,   l (t) = 0.69 



g(λ)

′
1 ⁄ 2

qt
7 ⁄ 3




2 ⁄ 7

   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) .

In the self-similar variables (22) it has the form

H = 


1

π2
 


1

ξ
 − 

1

ξ0









1 ⁄ 4
 ,   l (t) = ξ0 (η(λ)t)

2 ⁄ 3 ,   ξ0 = 0.69   (0 < ξ ≤ ξ0) ,   H = 0   (ξ > ξ0) . (25)
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In the second case, we take Manning’s law for the law of resistance [9, 10]. Then we can write the following
for the coefficient λ:

λ = 




h∗∗
h





1 ⁄ 3

 . (26)

Values for h∗∗  can be estimated on the basis of the data presented in [11]. For this case we use Manning’s law of
resistance (26) for the coefficient of resistance and on the basis of Eqs. (1) and (2) with the inertia effects being ne-
glected we obtain

∂h
∂t

 = − 
1
r

 
∂
∂r

 




rh √− g~(λ)

 ′ h
4 ⁄ 3 

∂h

∂r
 




 ,   u = √− g~(λ)

 ′ h
4 ⁄ 3 

∂h

∂r
   g

~
(λ)
 ′  = g′ ⁄ h∗∗


  . (27)

We represent the analytical solution at a constant power of the source (conditions (6)) as

h = 







13

12
 

Q
2

π2
g~(λ)

 ′
 


1

r
 − 

1

l












3 ⁄ 13

 ,   l (t) = 0.77 Q
7
 (g~(λ)

 ′ )3
 t

13


1 ⁄ 23

   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) .

The self-similar solution of the problem exists if the dependence of the power of the smog source on time
has the form (13). We introduce the dimensionless height and the self-similar variable in the following manner:

H = h ⁄ h
~

(λ) ,   ξ = 
r

(η~(λ)t)
2 ⁄ 3

 ,   h
~

(λ) = 







q
3

g~(λ)
 ′

2








1 ⁄ 9

 ,   η~(λ) = (q3
g~(λ)

 ′ )1 ⁄ 6 . (28)

Then Eq. (27) in the variables (28) is written in the form

− 
2
3

 ξ 
dH
dξ

 + 
1
ξ

 
d

dξ
 




ξH √− H

4 ⁄ 3 
dH
dξ

 




 = 0 . (29)

We represent initial and boundary conditions (6) and (13) in the self-similar variables (28) as

H (∞) = 0 ,   2πξcH √ − H
4 ⁄ 3 



dH
dξ



 ξc

 = 1   (ξc → 0) . (30)

Numerical solution of Eq. (29) with account for (30) yielded ξ0 = 0.71. Then the expression for the law of
motion of the leading front of the smog has the form

l (t) = 0.71 (η~(λ)t)
2 ⁄ 3 .

We represent the approximate solution of Eq. (27) obtained by the SSSS method with initial and boundary conditions
(6) and (13) as

h = 







13

12
 
q

2
t
2 ⁄ 3

π2
g~(λ)

 ′
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

1

r
 − 

1

l












3 ⁄ 13

 ,   l (t) = 0.67 



g~(λ)

 ′
1 ⁄ 6

 q
1 ⁄ 2t





2 ⁄ 3

   (0 < r ≤ l (t)) ,   h = 0   (r > l (t)) . (31)

In the self-similar variables (28) it can be written as
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H = 


13
12

 


1
ξ

 − 
1
ξ0









3 ⁄ 13

 ,   l (t) = ξ0 (η~(λ)t)
2 ⁄ 3 ,   ξ0 = 0.67   (0 < ξ ≤ ξ0) ,   H = 0   (ξ > ξ0) . (32)

Figure 2 and 3 present graphs which illustrate certain qualitative and quantitative features of evolution of the
smog layer for different types of the square law of resistance determined by formulas (3) and (19) at the same values
of the blowout intensity Q = 1000 m3/sec and smog density ρ = 1.3013 kg/m3. For the other parameters, which de-
termine the state of the atmosphere and the force of resistance, we took ρA = 1.3 kg/m3, ru = 5 m, λ = 2.5⋅10−3, and
h∗∗  = 2.3⋅10−7 m (g′ = 0.01 m/sec2). We note that the value for ru corresponds to the forest thickness n = 0.4 with
a typical diameter of the trees of d = 0.5 m, while the reduced value for h∗∗  is obtained on the basis of the tabular
data from [11] for a smooth fluvial plain. It follows from the comparison of curves 2 and 3 (Figs. 2 and 3) that the
two approaches to specification of the coefficient λ in (19) give close results. Furthermore, a strong influence of flora
on the spreading of blowouts is seen from the curves presented.

Conclusions. On the basis of the model of quasi-one-dimensional theory that was taken, we have revealed
certain qualitative and quantitative features of spreading of heavy mixtures (as compared to air) along the underlying
ground for different laws for the force of resistance. The obtained numerical self-similar and approximate analytical so-
lutions can be used to test computation algorithms by more complex mathematical models which allow for heat and
mass transfer processes and multidimensional effects.

NOTATION

r, distance reckoned from the source, m; t, time, sec; u, velocity of the smog, m/sec; h, smog thickness, m;
z, vertical coordinate along which h is measured, m; g, gravitational acceleration, m/sec2; ρ and ρA, density of the
smog and the atmospheric air, kg/m3; τG, τA, and τF, reduced forces of resistance related to columns of smog with a
unit base on the source side of the earth’s surface, the atmospheric air, and surface objects distributed over the earth’s
surface, m2/sec2; tu, empirical parameter, sec; d, typical diameter of the trees, m; n, number of trees per unit area (for-
est thickness), 1/m2; χ, dimensionless coefficient (χ D 1); h∗ , certain characteristic thickness of the layer, m; Q, source
power, m3/sec; l(t), coordinate of the front boundary of the smog layer, m; h∗∗ , effective parameter responsible for the
roughnesses of the earth’s surface, m; λ, coefficient of resistance on the source side of the earth’s surface. Subscripts:
c, center; m, maximum; G, ground; A, atmosphere; F, flora.

Fig. 2. Dependence of the coordinate of the front boundary of the smog layer
on time: 1) predominance of resistance on the source side of flora; 2 and 3)
absence of flora for two approaches to specification of the coefficient of resis-
tance, respectively.

Fig. 3. Distribution of the smog layer for different laws of resistance: 1) thinly
growing flora; 2 and 3) absence of flora [forces of resistance are specified by
Manning’s law and at λ = const, respectively] for a time of 1 h.
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